İranlı âlim, şair ve filozof: Ömer Hayyam

İbn Sînâ ekolüne mensup bir âlim-filozof olduğu kabul edilen Ömer Hayyâm cebir, geometri, astronomi, fizik ve tıpla ilgilenmiş, müzikle uğraşmış, ayrıca adını ölümsüzleştiren rubâîlerini kaleme almıştır.

İranlı âlim, şair ve filozof: Ömer Hayyam

430-439 (1039-1048) yılları arasında Horasan eyaletinin merkezi Nîşâbur’da doğdu. Öğrenimini ve hayatının büyük bir kısmını orada ve Semerkant’ta geçirdi. Sözlükte hayyâm kelimesi “çadır yapımcısı” anlamına gelmekle birlikte onun İran’da yerleşmiş Arap asıllı Hayyâmî kabilesine mensup olabileceği de düşünülmektedir. Kendisine büyük ilgi gösteren Selçuklu sultanlarının, Vezir Nizâmülmülk’ün saraylarında görev yapmaktan hoşlanmadı ve bilimsel araştırmalara adanmış sakin bir hayatı seçerek zaman zaman Semerkant, Buhara, Belh ve İsfahan gibi bilim ve sanat merkezlerinde dolaşmayı tercih etti. Semerkant’ta iken Ebû Tâhir isminde yüksek makam sahibi bir memurun himayesine girdi. Nîşâbur’da 517-526 (1123-1132) yılları arasında seksen beş yaşlarında öldüğü tahmin edilmektedir.

İbn Sînâ ekolüne mensup bir âlim-filozof olduğu kabul edilen Ömer Hayyâm cebir, geometri, astronomi, fizik ve tıpla ilgilenmiş, müzikle uğraşmış, ayrıca adını ölümsüzleştiren rubâîlerini kaleme almıştır. Ali b. Zeyd el-Beyhakī Hayyâm’ın hâfızasının fevkalâde kuvvetli olduğunu, dil, fıkıh, tarih ve kıraat sahalarında geniş mâlûmatı bulunduğunu, riyâziye, tıp ve diğer aklî ilimlerde eşsiz olduğunu söylerken Necmeddîn-i Dâye onun hakkında “bahtsız bir filozof, Allahsız ve maddeci” demektedir (İA, IX, 474). Ömer Hayyâm, Batı’da Doğu’nun en fazla hayranlık duyulan şairi ve en tanınmış âlimlerinden biridir. 1892’de Londra’da onun adına bir kulüp kurulmuş, 1970’te ayın üzerindeki bir kratere, 1980’de yeni bulunan bir kuyruklu yıldıza adı verilmiştir.

Hayyâm’ın genelde matematiğin ve özelde analitik geometrinin gelişimi üzerindeki etkisi çok büyüktür; çalışmaları Şerefeddin et-Tûsî’ye (ö. 610/1213 [?]) kadar İslâm matematiğinde, üçüncü dereceden denklemlerin çözümünde geometrik yaklaşımı benimseyen Descartes’a (ö. 1650) kadar Batı matematiğinde aşılamamıştır. Onun matematiğe ilişkin araştırmaları ve bilhassa sayılar kuramı Öklid’in beşinci postülatı ve cebir alanında yoğunlaşmıştır. Elementler’e dair yaptığı bir yorum olan Risâle fî şerḥi mâ eşkele min müṣâderâti Kitâbi Öḳlîdis’te işlemler sırasında irrasyonel sayıların da rasyonel sayılar gibi kullanılabileceğini ilk defa o kanıtlamıştır. Bu eser ayrıca Öklid dışı geometrilerin kurulmasına öncülük etmiştir. Bu geometriler, Öklid’in paraleller postülatı adıyla da tanınan beşinci postülatının uzun süre iyi anlaşılamaması sebebiyle teorem sanılarak kanıtlanmaya çalışılması sonucu ortaya çıkmıştır. Bu çalışmalar içinde Doğu’da en esaslı olanlarından biri Ömer Hayyâm tarafından gerçekleştirilmiştir ve Batı’da ondan altı asır sonra konuyla ilk defa ilgilenen ve bundan dolayı Öklid dışı geometri araştırmalarının öncüsü sayılan İtalyan matematikçisi Giovanni Girolamo Saccheri’nin beşinci postülat üzerindeki incelemeleriyle dikkate değer bir benzerlik göstermektedir. Hayyâm, beşinci postülatı kanıtlamaya çalışırken daha sonra Saccheri’nin Euclides ab omni naevo vindicatus adlı eserinde aynı şekilde ele aldığı şöyle bir teorem geliştirmiştir: Birbirine eşit AC ve BD çizgilerini çektikten sonra AB ve CD’yi birleştirelim; ortaya şu üç durum çıkar:

C ve D açılarının ikisi de dik ise CD = AB’dir,



C ve D açılarının ikisi de dar ise CD > AB’dir.


 

Ömer Hayyâm’a göre bu, beşinci postülatın kanıtlanmasıdır (Katz, s. 269-270). Dilgan da birinci durumun Öklid, ikinci durumun Riemann ve üçüncü durumun Lobatchewsky geometrilerine, diğer bir deyişle parabolik, eliptik ve hiperbolik geometrilere karşılık geldiğini söylemektedir (Şair Matematikçi Ömer Hayyâm, s. 27-28).

Üçüncü dereceden denklemleri sistemli bir şekilde çözdüğü için Hayyâm cebirde Hârizmî’nin gerçekleştirdiği gelişmenin ötesine geçmiştir. Ancak onun, üçüncü dereceden denklemlerin aritmetik çözümlerinin olamayacağına dair inancına karşı kendisinden sonra Şerefeddin et-Tûsî ile takipçileri bu tür denklemlerin aritmetik çözümlerinin bulunabileceğini göstermiştir. XVI. yüzyılda Batı’da bu tür denklemlerin aritmetik çözüm yöntemlerinin varlığı anlaşılmıştır. Hayyâm aynı zamanda cebirsel olguların geometrik olgular halinde ortaya çıktığını savunmuş, böylece Descartes’tan çok önce nümerik ve geometrik cebir arasındaki boşluğu kapatma yönünde önemli bir adım atmıştır. Onun bundan başka cebirde, n tam pozitif iken (a + b)n ifadesinin açınım formülünü Newton’dan önce kanunlaştırdığı söylenmekte, ayrıca aritmetik üçgen (Pascal veya Tartaglia üçgeni) adı verilen ve (a + b)n açınımındaki katsayılarla teşkil edilen şemanın da Hayyâm’a ait olduğu ileri sürülmektedir (Dilgan, Şair Matematikçi Ömer Hayyâm, s. 6-7).

Astronomi alanına da büyük katkıları olan Ömer Hayyâm, İbnü’l-Esîr’in verdiği bilgiye göre 467 (1074-75) yılında Büyük Selçuklu Sultanı Melikşah tarafından İsfahan’a davet edilerek Ebû Hâtim İsfizârî, Meymûn b. Necîb el-Vâsıtî, Abdurrahman Hâris ve Muhammed Hâzin’den oluşan bir heyetin başkanlığına getirilmiş ve bir rasathâne kurup o yıllarda kullanılan Yezdicerd takvimini düzeltmekle görevlendirilmiştir. Ömer Hayyâm ile diğer bilim adamları yaptıkları çalışmalar sonucunda Yezdicerd takvimini düzeltmek yerine mevsimlere tam uyum gösterecek yeni bir takvim düzenlemenin daha doğru olacağına karar vermiş, böylece güneş yılı uzunluğu 365,2424 (modern ölçümlere göre gerçek uzunluk 365,2422) gün ve dolayısıyla hata payı 5000 yılda 1 gün olan Celâlî takvimi ortaya çıkmıştır. Heyet ayrıca Zîc-i Melikşâhî adlı bir zîc hazırlamış, kurulan rasathâne ise Melikşah’ın ölümüne (ö. 485/1092) kadar faaliyetini sürdürmüştür.

Hayyâm rubâîleriyle tanınmış bir şairdir. İmâdüddin el-İsfahânî Ḫarîdetü’l-ḳaṣr’ında onu Horasan şairleri arasında sayar ve örnek olarak Arapça bir rubâîsini verir. Rubâîlerin sayısının Rubâʿiyyât’ının istinsah tarihlerine göre günümüze yaklaştıkça arttığı görülmekte ve birçoğunun zamanla ona izâfe edilen başka şairlerin şiirleri olduğu anlaşılmaktadır. Kendi özgün üslûbunu yansıtan rubâîlerin sayısı 100 civarındadır. Rubâîlerinin Latince çevirileri XVIII. yüzyılda ortaya çıkmaya başlamıştır; T. Hyde’ın Veterum Persarum’unda onlardan biri yer alır. 1804’te F. Dombay’ın Viyana’da basılan Farsça gramerinde de bazı çeviriler bulunmaktadır. Hayyâm’ı bir şair olarak Batı’ya asıl tanıtan ve sevdiren ise Edward Fitzgerald’ın yaptığı İngilizce tercümelerdir.

Eserleri. 1. Rubâʿiyyât. Pek çok dile çevrilmiş, edisyon kritiği ilk defa J. B. Nicolas tarafından yapılmıştır (Les quatrains de Khèyam, Paris 1867; aş.bk.).

2. Risâle fî taḳsîmi rubʿi’d-dâʾire. Üçüncü dereceden denklemlerin çözüm yöntemlerine ve x3 + 200x = 20x2 + 2000 denkleminin çözümüne ilişkindir. Gulâm Hüseyin Musâhib tarafından Farsça çevirisiyle birlikte tıpkıbasımı yapılan eser (Ḥakîm ʿÖmer Ḫayyâm be-ʿUnvân-ı ʿÂlim-i Cebr, Tahran 1339 hş.) Rusça’ya (S. A. Krasnovoy – B. A. Rosenfeld, “Pervyy Algebraicheskiy Traktat”, Istoriko-Matematicheskiye issledovaniya, XV [Moscow 1963], s. 445-472), İngilizce’ye (Ali Rıza Amir Moèz, “A Paper of Omar Khayyam”, Scripta Mathematica, XXXVIII [1968], s. 205-208) ve Fransızca’ya (R. Rashed – A. Djebbar, L’oeuvre algébrique d’al-Khayyam, Aleppo 1981) çevrilmiştir.

3. Risâle fi’l-berâhîn ʿalâ mesâʾili’l-cebr ve’l-muḳābele. Denklemlerin sınıflandırılmasına ve her grubun çözüm yöntemlerine ilişkindir (Woepcke, L’algèbre d’Omar Alkayyâmî publiée, traduitée et accompagnée d’extraits de manuscrits inédits, Paris 1851; Daoud S. Kasir, The Algebra of Omar Khayyam, New York 1931; H. J. J. Winter – W. Arafat, “The Algebra of ‘Umar Khayyam”, Journal of the Royal Asiatic Society of Bengal. Science, XVI [1950], s. 23-44).

4. Risâle fî şerḥi mâ eşkele min müṣâderâti Kitâbi Öḳlîdes. Öklid’in Elementler’i üzerine bir yorumdur (Takī İrânî, Risâle der Şerḥ-i Müşkilât-ı Muṣâderât-ı Kitâb-ı Öḳlîdis, Tahran 1314 hş.; Abdülhamîd Sabra [nşr.], Risâle fî şerḥi mâ eşkele min müṣâderâti Kitâb Öḳlîdis, İskenderiye 1381; Celâleddin Hümâî, Ḫayyâmînâme I, Tahran 1346 hş.; A. R. Amir Moèz, “’Omar al-Khayyami. Discussion of Difficulties of Euclid”, Scripta Mathematica, XXIV/4 [New York 1959], s. 275-303; Khalil Jaouiche, La théorie des parallès en pays d’Islam. Contribution à la préhistorie des géométries non-euclidiennes, Paris 1986).

5. Nevrûznâme. İsfahan’da Celâlî takvimi dahil kendi yönteminde hazırlanan takvimler üzerinedir (M. Mînovî [haz.], Nevrûznâme, Tahran 1312 hş.; Muhammed Abbâsî, Külliyyât-ı Âs̱âr-ı Pârsî-yi Ḥakîm ʿÖmer Ḫayyâm, Tahran 1338 hş.).

6. Zîc-i Melikşâhî. Hayyâm’ın kendi kurduğu gözlemevinde yapılan gözlem sonuçlarını içerir (V. S. Segalya – A. P. Yushevicha, “Traktaty”, Pervod Borisa A. Rosenfeld, Moskva 1962).

7. Mîzânü’l-ḥikem fî İhtiyâli maʿrifeti miḳdârey eẕ-ẕeheb ve’l-fiḍḍa fî cismin mürekkebin minhümâ. Metal alaşımlarındaki altın ve gümüş miktarının cebirsel yöntemlerle belirlenmesi hakkındadır. Abdurrahman el-Hâzinî tarafından tamamlanmıştır ve onun aynı adı taşıyan eserinin dördüncü kitabının beşinci bölümü içerisindedir.

8. Fi’l-ḳusṭâsi’l-müstaḳīm. Hayyâm’ın icat ettiği hidrostatik teraziyle ilgili olup Hâzinî’nin Mîzânü’l-ḥikme’sinin yedinci kitabının sekizinci bölümünde geçer.

9. Silsile-i Tertîb (Risâle fî Külliyyâti’l-vücûd). Dört bölüm halindeki eserde birinci ve ikinci bölümler Fârâbîci ve İbn Sînâcı kozmolojinin temel öğeleri olan akıllar, nefisler ve unsurlarla madenler, bitkiler, hayvanlar ve insanlara, bunların aralarındaki ilişkilere dairdir. Üçüncü bölüm tümeller (külliyyât) ve kategoriler (makūlât), dördüncü bölüm hakikat konularını içerir (Rubaîler ve Silsilat-al-Tartîb, İbn-i Sînâ’nın Tamcîd’i ve Tercemesi [haz. ve trc. Abdülbaki Gölpınarlı], İstanbul 1953).

10. el-Ḳavl ʿale’l-ecnâs elletî bi’l-erbaʿ. Eserde müzikte diatonik, kromatik ve harmonik olmayan tonlar ele alınır ve bu üç ton dışında 4/3 oranıyla gösterilen dördüncü bir ton daha verilir (Rahîm Rızâzâde Melik, s. 49-64).

11. el-Kevn ve’t-teklîf (a.g.e., s. 321-342).

12. Cevâb ʿan s̱elâs̱i mesâʾil: Żarûretü’t-teżâd fi’l-ʿâlem ve’l-cebr ve’l-beḳāʾ (a.g.e., s. 411-422).

13. eż-Żiyâʾ el-ʿaḳlî fî mevżûʿi’l-ʿilmi’l-küllî (a.g.e., s. 369-375).

14. Risâle fi’l-vücûd (a.g.e., s. 395-409).

15. Şerḥu’l-müşkil min Kitâbi’l-Mûsîḳā.

16. Levâzımü’l-emkine. Felsefî bir eserdir (eserlerinin bir listesiyle yazma nüshaları ve baskıları için bk. Youschkevitch – B. A. Rosenfeld, VIII, 331-333; Rosenfeld – İhsanoğlu, s. 168-170).

Yayın Tarihi: 04 Aralık 2021 Cumartesi 09:00
banner25
YORUM EKLE

banner19

banner26